黄铜膏状焊料钎焊的机理
admin 添加于 2015-11-23 15:14
黄铜膏状焊料钎焊的机理
钎焊分为黄铜膏状焊料硬钎焊和软钎焊。主要是根据钎料(以下称焊料)的熔化温度来区分的,一般把熔点在450℃以下的焊料叫作软焊料,使用软焊料进行的焊接就叫软钎焊;把熔点在450℃以上的焊料叫作硬焊料,使用黄铜膏状焊料硬焊料进行的焊接就叫硬钎焊。在美国MIL SPEC军用标准中,是以800℉(429℃)的金属焊料的熔点作为区分硬钎焊和软钎焊的标准。 电子装联用锡焊是一种软钎焊,其焊料主要使用锡Sn、铅Pb、银Ag、铟In、铋Bi等金属,目前使用最广的是Sn-Pb和Sn-Pb-Ag系列共晶焊料,熔点一般在185℃左右。 钎焊意味着固体金属表面被某种熔化合金浸润。这种现象可用一定的物理定律来表示。如果从热力学角度来考虑浸润过程,也有各种解释的观点。有一种观点是用自由能来解释的。 ⊿F=⊿U-T⊿S 在这里,F是自由能,U是内能,S是熵。 ⊿F与两种因素有关,即与内能和熵的改变有关。一般S常常趋向于最大值,因此促使-T⊿S也变得更小。实际上,当固体与液体接触时,如果自由能F减少,即⊿F是负值,则整个系统将发生反应或趋向于稳定状态。由此可知,熵是浸润的促进因素,因为熵使⊿F的值变得更小。 ⊿F的符号最终决定于⊿U的大小和符号,它控制着浸润是否能够发生。为了产生浸润,焊料的原子必须与固体的原子接触,这就引起位能的变化,如果固体原子吸引焊料,热量被释放出来,⊿U是负值。如果不考虑⊿U的大小和量值,那么,熵值的改变与表面能的改变有同样的意义,浸润同样是有保证的。在基体金属和焊料之间产生反应,这就表明有良好的浸润性和粘附性。如果固体金属不吸引焊料,⊿U是正值,这种情况下,取决于⊿U在特殊温度下的大小值,才能决定能否发生浸润。这时,增加T⊿S值的外部热能,能对浸润起诱发作用。这种现象可以解释弱浸润。
在焊接加温时,表面可能被浸润,在冷却时,焊料趋于凝固。在开始凝固的区域,⊿U是正值,其值比T⊿S大得多,当⊿F最终变为正值时,浸润现象就发生了。 有两种情况,一种是两种浸润材料互相发生浸润,导致结合,二者都呈现低表面能,这时的焊点具有良好强度。单纯的粘附作用不能产生良好的浸润性。假如把两种原子构成的固体表面弄得很光滑,在真空中叠合在一起,它们可能粘附在一起,这种现象是两个光滑断面之间的范德华力作用。这种结合接度以范德华力为基础,超过了任何接点的应用强度。生产中不会出现这种情况,因为范德华力是在很短距离时才起作用。实际工程上,表面都且有粗糙性,阻止原子密切接触。可是在一些局部,原子结合力也会起作用,这是很微小的。实际上,从宏观来观察时,也包括范德华力在内。 一般情况下,低表面能的材料在高表面能的材料上扩展,在这种情况下,整个系统的表面自由能减小。一个系统两个元件表面自由能相同时,就不发生扩展,或者说停止了扩展。 电子装联常用的锡-铅系列焊料焊接铜和黄铜等金属时,焊料在金属表面产生润湿,作为焊料成分之一的锡金属就会向母材金属中扩散,在界面上形成合金属,即金属间化合物,使两者结合在一起。在结合处形成的合金层,因焊料成分、母材材质、加热温度及表面处理等因素的不同会有变化。
钎料的机理必须从以下几个方面来解释:
1、扩散理论
2、晶间渗透理论
3、中间合金理论
4、润湿合金理论
5、机械啮合理论
漫流
漫流也叫扩展或铺展,它是一种物理现象,服从一般的力学规律,没有金属化学的变化。通常低表面能的材料在高表面能的材料上漫流。正如前面所述,漫流过程就是整个系统的表面自由能减小的过程。一个系统两个元件自由能相同时,不会产生漫流。在电子锡焊装联中,我们所讨论的一般都是液相体在固体表面上的漫流,漫流与液体的表面能,固体的表面性质等有关。这是一种液体没固体表面的流动即流体力学问题,同时也有毛细作用。漫流是浸润的先决条件。 浸润(Wetting) 软钎焊的第一个条件,就是已熔化的焊料在要连接的固体金属的表面上充分漫流以后,使之熔合一体,这样的过程叫作“浸润”(或润湿)。 粗看起来,金属表面是很光滑的。但是,若用显微镜放大看,就能看到无数凹凸不平,晶粒界面和划痕等,熔化的焊料没着这种凹凸与伤痕,就产生毛细作用,引起漫流浸润。 产生浸润的条件 为了使已熔焊料浸润固体金属表面,必须具备一定的条件。条件之一就是焊料与固体金属面必须是“清洁”的,由于清净,焊料与母材的原子间距离就能够很小,能够相互吸引,也就是使之接近到原子间力能发生作用的程度。斥力大于引力,这个原子就会被推到远离这个原子的位置,不可能产生浸润。当固体金属或熔化的金属表面附有氧化物或污垢时,这些东西就会变成障碍,这样就不会产生润湿作用,金属表面必须清洁,这是一个充分条件。
由于本论坛不支持文档中夹图表,因此在这里省略金属结构和原子相互作用力的示意图解释,请大家海涵。 表面张力 表面张力是液体表面分子的凝聚力,它使表面分子被吸向液体内部,并呈收缩状(表面积最小的形状)。液体内部的每个分子都处在其它分子的包围之中,被平均的引力所吸引,呈平衡状态。但是,液体表面的分子则不然,其上面是一个异质层,该层的分子密度小,平均承受垂直于液面、方向指向液体内部的引力。其结果,出现了在液体表面形成一层薄膜的现象,表面面积收缩到最小,呈球状。这是因为体积相同、表面积最小的形状是球体。这种自行收缩的力是表面自由能,这种现象叫做表面张力现象,这种能量叫做表面张力或表面能。这个表面能是对焊料的润湿起重要作用的一个因素。 毛细管现象 将熔化的清洁的焊料放在清洁的固体金属表面上时,焊料就会在固体金属表面上扩散,直到把固体金属润湿。这种现象是这样产生的:焊料借助于毛细管现象产生的毛细管力,沿着固体金属表面上微小的凸凹面和结晶的间隙向四方扩散。
液态金属不同于固体金属,其点阵排列不规则,以原子或分子的形态做布朗运动。因此,处在这种状态下的金属具有粘性和流动性,而没有强度。在这种情况下,金属在熔点附近的体积变化为3~4%左右。 关于毛细现象,有多种图表进行解释,初中物理课本的水银和水在细玻璃管壁的平衡形态,就是一个很好的解说。毛细原理是液态金属和固体金属间润湿的基础,有一个著名的托马斯-杨公式表示,大致是液态金属原子之间的作用力,液态金属和固体金属原子之间的作用力,液态金属原子和环境(空气、助焊剂等)原子作用力之间,三者的合力与液体球面切线的夹角,指向液态金属扩展的方向,则具有润湿的倾向,夹角越大,则润湿能力越强。具体可查阅相关资料。 扩散(Diff usion) 前面对软钎焊中的重要条件——浸润问题作了叙述,与这种浸润现象同时产生的,还有焊料对固体金属的扩散现象。由于这种扩散,在固体金属和焊料的边界层,往往形成金属化合物层(合金层)。 通常,由于金属原子在晶格点阵中呈热振动状态,所以在温度升高时,它会从一个晶格点阵自由地移动到其它晶格点阵,这人现象称为扩散现象。此时的移动速度和扩散量取决于温度和时间。例如,把金放在清洁的铅面上,在常温加压状态下放几天,就会结合成一体,这类的结合也是依靠扩散而形成的。 一般的晶内扩散,扩散的金属原子即使很少,也会成为固溶体而进入基体金属中。不能形成固溶体时,可认为只扩散到晶界处。因在常温加工时,靠近晶界处晶格紊乱,从而极易扩散。 固体之间的扩散,一般可认为是在相邻的晶格点阵上交换位置的扩散。除此之外,也可用复杂的空穴学说来解释。当把固体金属投入到熔化金属中搅拌混合时,有时可形成两个液相。一般说来,固体金属和熔化金属之间就要产生扩散。下面,就介绍这些金属间发生的扩散。 扩散的分类 扩散的程度因焊料的成分和母材金属的种类及不同的加热温度而异,它可分成从简单扩散到复杂扩散几类。 大体上说,扩散可分为两类,即自扩散(Self-diffusion)和异种原子间的扩散——化学扩散(Chemical diffusion)。所谓自扩散,是指同种金属原子间的原子移动;而化学扩散是指异种原子间的扩散。
如从扩散的现象上看,扩散可分为三类:
晶内扩散(Bulk diffusion)、晶界扩散(Grain-boundary diffusion)和表面扩散(Surface diffusion)。 通过扩散而形成的中间层,会使结合部分的物理特性和化学特性发生变化,尤其是机械特性和耐腐蚀性等变化更大。因此,有必要对结合金属同焊料成分的组合进行充分的研究。
1、表面扩散:
结晶组织与空间交界处的原子,总是易于在结晶表面流动。可认为这与金属表面正引力作用有关。因此,熔化焊料的原子沿着被焊金属结晶表面的扩散叫做表面扩散。表面扩散可以看成是金属晶粒形核长大时发生的一种表面现象,也可以认为是金属原子沿着结晶表面移动的现象,是宏观上晶核长大的主要动力。当气态金属原子在固体表面上凝结时,撞到固体表面上的原子就会沿着表面自由扩散,最后附着在结晶晶格的稳定位置上。这种情况下的原子移动,也称为表面扩散。一般认为,这时的扩散活动能量是比较小的。如前如述:表面扩散也分为自扩散和化学扩散两种。 用锡-铅系列焊料焊接铁、铜、银、镍等金属时,锡在其表面有选择地扩散,由于铅使表面张力下降,还会促进扩散。这种扩散也属表面扩散。
2、晶界扩散:
这是熔化的焊料原子向固体金属的晶界扩散,液态金属原子由于具有较高的动能,沿着固体金属内部的晶粒边界,快速向纵深扩展。与异种金属原子间晶内扩散相比,晶界扩散是比较容易发生的。另外,在温度比较低的情况下,同后面说到的体扩散相比,晶界扩散容易产生,而且其扩散速度也比较快。 一般来说,晶界扩散的活化能量可比体扩散的活化能量小,但是,在高温情况下,活化能量的作用不占主导地位,所以晶界扩散和体扩散都能够很容易地产生。然而低温情况下的扩散,活化能量的大小成为主要因素,这时晶界扩散非常显著,而体扩散减少,所以看起来只有晶界扩散产生。 用锡-铅焊料焊铜时,锡在铜中既有晶界扩散,又有体扩散。另外,越是晶界多的金属,即金属的晶粒越小,越易于结合,机械强度也就越高。 由于晶界原子排列紊乱,又有空穴(空穴移动),所以极易熔解熔化的金属,特别是经过机械加工的金属更易结合。然而经过退火的金属,由于出现了再结晶、孪晶,晶粒长大,所以很难扩散。经退火处理的不锈钢难以焊接就是这个道理。为了易于焊接越见,加工后的母材的晶粒越小越好。
3、体扩散(晶内扩散)
熔化焊料扩散到晶粒中去的过程叫做体扩散或晶内扩散。焊料向母材内部的晶粒间扩散。由于晶界之间的能量起伏,因此这个扩散阶段,可形成不同成分的合金。沿不同的结晶方向,扩散程度不同。由于扩散,母材内部生成各种组成的合金。在某些情况下,晶格变化会引起晶粒自身分开。对于体扩散,如焊料的扩散超过母材允许固溶度,就会产生象铜和锡共存的那种晶格变化,使晶粒分开,形成新晶粒。这种扩散是在铜及黄铜等金属被加热到较高温度时发生的。
4、晶格内扩散
将焊料沿着晶体内特定的晶面,以特定的方向扩散的过程叫做晶格内面扩散或网孔状扩散。这是由于固体金属的不规则,熔化的金属原子向某一个面析出及晶格缺陷而引起的。这种扩散也可沿结晶轴方向发生,焊料金属可分割晶粒,引起和晶界扩散相类拟的现象。 在电子产品用的锡铅焊料中,几乎不发生这种扩散,这里仅做为参考。
5、选择扩散
用二种以上的金属元素组成的焊料焊接时,其中某一金属元素先扩散,或者只有某一金属元素扩散,其它金属元素根本不扩散,这种扩散叫做选择扩散。前面所说的扩散,都是以熔化金属向母材中的扩散现象作为分类依据的。这里所讲的扩散,是指熔化金属自身的扩散方式。 当用锡-铅焊料焊接某一金属时,焊料成分中的锡向固体金属中扩散,而铅不扩散,这就是前面说的选择扩散。因此在合金层靠焊料一侧,在显微镜下观察金相,可看到一层薄薄的黑色带状,这就是富铅层。钎焊紫铜和黄铜时也同样有这种扩散。